# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# catena-Poly[[diaquabis[(4-nitrophenylsulfinyl)acetato- $\kappa$ O]zinc(II)]- $\mu$ -4,4'bipyridine- $\kappa^2 N:N'$ ]

### Yan-Jun Hou,\* Ying-Hui Yu, Zhi-Zhong Sun, Bai-Yan Li and Guang-Feng Hou

College of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China Correspondence e-mail: hgf1000@163.com

Received 17 April 2007; accepted 23 April 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.029; wR factor = 0.077; data-to-parameter ratio = 16.2.

In the title coordination polymer,  $[Zn(C_8H_6NO_5S)_2-(C_{10}H_8N_2)(H_2O)_2]_n$ , each  $Zn^{II}$  ion is in a slightly distorted octahedral coordination environment, formed by two carboxylate O atoms from two (4-nitrophenylsulfinyl)acetate ligands, two N atoms from bipyridine ligands and two water molecules. The  $Zn^{II}$  ions and the bipyridine ligands lie on crystallographic twofold axes with the  $Zn^{II}$  ions linked by bipyridine ligands into a one-dimensional chain structure. In the crystal structure, intermolecular  $O-H\cdots O$  hydrogen bonds link one-dimensional chains into a three-dimensional network.

#### **Related literature**

For synthetic background, see: Ghosh *et al.* (2005), and for previously published structures related to the topic, see: Glidewell *et al.* (2002, 2003). For preparation details, see: Nobles & Thompson (1965).

# Experimental

#### Crystal data

 $\begin{bmatrix} Zn(C_8H_6NO_5S)_2(C_{10}H_8N_2)(H_2O)_2 \end{bmatrix}$   $M_r = 713.98$ Orthorhombic, *Fdd2*  a = 20.079 (4) Å b = 25.646 (5) Å c = 11.485 (2) Å

#### Data collection

Rigaku RAXIS-RAPID14073 measured reflectionsdiffractometer3335 independent reflectionsAbsorption correction: multi-scan3138 reflections with  $I > 2\sigma(I)$ (ABSCOR; Higashi, 1995) $R_{int} = 0.027$  $T_{min} = 0.761, T_{max} = 0.822$  $R_{int} = 0.027$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.029$ | H-atom parameters constrained                              |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.077$               | $\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$  |
| S = 1.07                        | $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$ |
| 3335 reflections                | Absolute structure: Flack (1983)                           |
| 206 parameters                  | Flack parameter: 0.022 (14)                                |
| 13 restraints                   |                                                            |

V = 5914 (2) Å<sup>3</sup>

Mo  $K\alpha$  radiation

 $0.28 \times 0.23 \times 0.20$  mm

 $\mu = 1.04 \text{ mm}^{-1}$ 

T = 293 (2) K

Z = 8

# Table 1

Hydrogen-bond geometry (Å, °).

|                                                                                       |      | $1 \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------------------------------------------------------|------|--------------|--------------|---------------------------|
| $\begin{array}{ccc} D6-H12\cdots O1^{i} & 0.\\ D6-H11\cdots O2^{ii} & 0. \end{array}$ | 85 1 | .88 2        | 2.731 (4)    | 176                       |
|                                                                                       | 85 1 | .83 2        | 2.655 (4)    | 162                       |

Symmetry codes: (i)  $x + \frac{1}{4}, -y + \frac{7}{4}, z - \frac{1}{4}$ ; (ii) -x, -y + 2, z.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXL97*.

The authors thank Heilongjiang University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2371).

#### References

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ghosh, S. K., Ribas, J. & Bharadwaj, P. K. (2005). Cryst. Growth Des. 5, 623-629.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2002). Acta Cryst. C58, o201–o203.
- Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o124–o126.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Nobles, W. L. & Thompson, B. B. (1965). J. Pharm. Sci. 54, 709-713.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, m1530 [doi:10.1107/S1600536807020260]

# *catena*-Poly[[diaquabis[(4-nitrophenylsulfinyl)acetato- $\kappa O$ ]zinc(II)]- $\mu$ -4,4'-bipyridine- $\kappa^2 N:N'$ ]

# Y.-J. Hou, Y.-H. Yu, Z.-Z. Sun, B.-Y. Li and G.-F. Hou

## Comment

4,4'-Bipyridine and organic aromatic carboxylic acid ligands are often used in syntheses to bridge metal atoms and these compound can demonstrate fascinating network topologies and potential application in the field of host–guest chemistry, ion exchange and catalysis (Ghosh *et al.*, 2005). Simple carboxylic acids containing the 4-nitrophenyl group exhibit a variety of supramolecular aggregation patterns (Glidewell *et al.*, 2002). Recently, our attention has been focused on 4-nitrophenyl-sulfinyl acetic acid, whose crystal structure has been reported previously (Glidewell *et al.*, 2003).

Complex(I) consists of linear chains formed through 4,4'-bipy ligands linking six-coordinate Zn<sup>II</sup> ions (Fig. 1). The ZnII ion has slightly distorted octahedral geometry. Two N donors of two 4,4'-bipy ligands and two coordinated water molecules lie in the equatorial plane, while two O-atom donors of two (4-nitrophenylsulfinyl)acetate ligands are in the axial positions.

These one-dimensional chains are connected into a three dimensional network *via* intermolecular O—H···O hydrogen bonds(Table 1),(Fig. 2).

# Experimental

(4-Nitrophenylsulfanyl)acetic acid was prepared by a nucleophilic reaction of chloroacetic acid and 4-nitrothiophenol under basic conditions. (4-nitrophenylsulfanyl)acetic acid was then oxidized using 30% aqueous hydrogen peroxide in acetic an-hydride solution, producing 4-nitrophenylsulfinyl acetic acid (Nobles & Thompson, 1965). Zinc nitrate hexahydrate (0.586 g, 2 mmol) and (4-nitrophenylsulfinyl)acetic acid (0.458 g, 2 mmol) and 4,4'-bipyridine (0.312 g, 2 mmol) were dissolved in water and the pH was adjusted to 6 with 0.01*M* sodium hydroxide, colorless crystals separated from the filtered solution after several days.

#### Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, withwith C—H = 0.93 Å (aromatic C) or C—H = 0.97 Å (methylene C), and with  $U_{iso}(H) = 1.2Ueq(C)$ . Water H atoms were initially located in a difference Fourier map but they were treated as riding on their parent atoms with O—H = 0.85 Å and with  $U_{iso}(H) = 1.5Ueq(O)$ .

**Figures** 



Fig. 1. Part of the polymeric structure of the title complex, with the atomlabelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as spheres of arbitrary radii. [Symmetry codes: (I) -x, -y + 2, z; (II) x, y,z - 1; (III)-x, -y + 2, z - 1, (IV) x, y, z + 1].

Fig. 2. A partial packing plot of (I). Dashed lines indicate the donor to acceptor non-bonded contacts invloved in hydrogen bonding. H atoms have been omitted.

# catena-Poly[[diaquabis[(4-nitrophenylsulfinyl)acetato- $\kappa O$ ]zinc(II)]- $\mu$ -4,4'-bipyridine- $\kappa^2 N$ :N']

| Crystal data                                                 |                                              |
|--------------------------------------------------------------|----------------------------------------------|
| $[Zn(C_8H_6NO_5S)_2(C_{10}H_8N_2)(H_2O)_2]$                  | $F_{000} = 2928$                             |
| $M_r = 713.98$                                               | $D_{\rm x} = 1.604 {\rm ~Mg~m}^{-3}$         |
| Orthorhombic, Fdd2                                           | Mo $K\alpha$ radiation $\lambda = 0.71073$ Å |
| Hall symbol: F 2 -2d                                         | Cell parameters from 12942 reflections       |
| a = 20.079 (4) Å                                             | $\theta = 6.3 - 54.9^{\circ}$                |
| b = 25.646 (5)  Å                                            | $\mu = 1.04 \text{ mm}^{-1}$                 |
| c = 11.485 (2) Å                                             | T = 293 (2)  K                               |
| $V = 5914 (2) \text{ Å}^3$                                   | Block, colourless                            |
| <i>Z</i> = 8                                                 | $0.28\times0.23\times0.20~mm$                |
| Data collection                                              |                                              |
| Rigaku RAXIS-RAPID<br>diffractometer                         | 3335 independent reflections                 |
| Radiation source: fine-focus sealed tube                     | 3138 reflections with $I > 2\sigma(I)$       |
| Monochromator: graphite                                      | $R_{\rm int} = 0.027$                        |
| T = 293(2)  K                                                | $\theta_{\text{max}} = 27.4^{\circ}$         |
| ω scans                                                      | $\theta_{\min} = 3.1^{\circ}$                |
| Absorption correction: multi-scan<br>(ABSCOR; Higashi, 1995) | $h = -26 \rightarrow 26$                     |
| $T_{\min} = 0.761, T_{\max} = 0.822$                         | $k = -33 \rightarrow 33$                     |

# Refinement

14073 measured reflections

| Refinement on $F^2$             | Hydrogen site location: inferred from neighbouring sites |
|---------------------------------|----------------------------------------------------------|
| Least-squares matrix: full      | H-atom parameters constrained                            |
| $R[F^2 > 2\sigma(F^2)] = 0.029$ | $w = 1/[\sigma^2(F_0^2) + (0.047P)^2 + 4.1913P]$         |

 $l = -14 \rightarrow 14$ 

|                                                                | where $P = (F_0^2 + 2F_c^2)/3$                         |
|----------------------------------------------------------------|--------------------------------------------------------|
| $wR(F^2) = 0.077$                                              | $(\Delta/\sigma)_{\rm max} = 0.005$                    |
| <i>S</i> = 1.07                                                | $\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$  |
| 3335 reflections                                               | $\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$ |
| 206 parameters                                                 | Extinction correction: none                            |
| 13 restraints                                                  | Absolute structure: Flack (1983)                       |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.022 (14)                            |
| Secondary atom site location: difference Fourier man           |                                                        |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x             | У            | Ζ          | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|---------------|--------------|------------|---------------------------|
| C1  | 0.02856 (17)  | 0.72739 (13) | 0.5181 (3) | 0.0284 (7)                |
| C2  | 0.0666 (2)    | 0.70549 (15) | 0.4295 (3) | 0.0362 (8)                |
| H1  | 0.0647        | 0.7189       | 0.3544     | 0.043*                    |
| C3  | 0.10728 (19)  | 0.66355 (14) | 0.4545 (3) | 0.0374 (9)                |
| H2  | 0.1334        | 0.6484       | 0.3969     | 0.045*                    |
| C4  | 0.1084 (2)    | 0.64463 (14) | 0.5672 (3) | 0.0338 (8)                |
| C5  | 0.0714 (2)    | 0.66611 (15) | 0.6570 (3) | 0.0398 (9)                |
| Н3  | 0.0733        | 0.6524       | 0.7319     | 0.048*                    |
| C6  | 0.0315 (2)    | 0.70887 (15) | 0.6312 (3) | 0.0364 (8)                |
| H4  | 0.0069        | 0.7250       | 0.6897     | 0.044*                    |
| C7  | 0.03217 (17)  | 0.83002 (12) | 0.4745 (4) | 0.0310 (7)                |
| Н5  | 0.0590        | 0.8310       | 0.5448     | 0.037*                    |
| H6  | 0.0614        | 0.8232       | 0.4091     | 0.037*                    |
| C8  | -0.00307 (18) | 0.88235 (12) | 0.4576 (3) | 0.0280 (7)                |
| C9  | 0.0212 (2)    | 1.04111 (14) | 0.7267 (4) | 0.0370 (8)                |
| H7  | 0.0369        | 1.0699       | 0.6860     | 0.044*                    |
| C10 | 0.0210 (2)    | 1.04293 (17) | 0.8483 (4) | 0.0414 (9)                |
| H8  | 0.0349        | 1.0729       | 0.8869     | 0.050*                    |
| C11 | 0.0000        | 1.0000       | 0.9105 (5) | 0.0300 (13)               |
| C12 | 0.0000        | 1.0000       | 1.0404 (5) | 0.0359 (14)               |
| C13 | 0.0321 (2)    | 0.96088 (16) | 1.1036 (4) | 0.0383 (9)                |
| Н9  | 0.0536        | 0.9338       | 1.0650     | 0.046*                    |
| C14 | 0.03179 (19)  | 0.96264 (14) | 1.2234 (4) | 0.0355 (8)                |

# supplementary materials

| H10 | 0.0545        | 0.9369       | 1.2643      | 0.043*       |
|-----|---------------|--------------|-------------|--------------|
| N1  | 0.1489 (2)    | 0.59871 (17) | 0.5925 (4)  | 0.0506 (9)   |
| N2  | 0.0000        | 1.0000       | 0.6666 (4)  | 0.0264 (10)  |
| N3  | 0.0000        | 1.0000       | 1.2837 (4)  | 0.0308 (11)  |
| 01  | -0.06561 (15) | 0.78963 (11) | 0.5975 (3)  | 0.0472 (7)   |
| O2  | -0.06099 (15) | 0.88136 (10) | 0.4182 (3)  | 0.0446 (7)   |
| O3  | 0.03031 (12)  | 0.92181 (8)  | 0.4850 (2)  | 0.0302 (5)   |
| O4  | 0.1760 (2)    | 0.57580 (17) | 0.5154 (4)  | 0.0837 (12)  |
| O5  | 0.1539 (2)    | 0.58524 (18) | 0.6938 (4)  | 0.0845 (12)  |
| O6  | 0.10205 (11)  | 1.02344 (9)  | 0.4739 (2)  | 0.0324 (5)   |
| H12 | 0.1267        | 1.0044       | 0.4314      | 0.049*       |
| H11 | 0.0976        | 1.0551       | 0.4537      | 0.049*       |
| S2  | -0.02931 (4)  | 0.77903 (3)  | 0.48577 (9) | 0.0311 (2)   |
| Zn1 | 0.0000        | 1.0000       | 0.47672 (3) | 0.02310 (14) |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0334 (17) | 0.0190 (14) | 0.0327 (19) | -0.0014 (12) | 0.0014 (15)  | 0.0027 (13)  |
| C2  | 0.046 (2)   | 0.0311 (17) | 0.0318 (18) | 0.0040 (16)  | 0.0073 (17)  | 0.0063 (15)  |
| C3  | 0.0390 (19) | 0.0333 (18) | 0.040 (2)   | 0.0061 (15)  | 0.0095 (16)  | -0.0009 (15) |
| C4  | 0.0373 (18) | 0.0277 (17) | 0.0365 (19) | 0.0073 (15)  | -0.0023 (16) | 0.0044 (15)  |
| C5  | 0.048 (2)   | 0.039 (2)   | 0.0323 (19) | 0.0122 (18)  | 0.0004 (17)  | 0.0072 (16)  |
| C6  | 0.043 (2)   | 0.0346 (19) | 0.032 (2)   | 0.0091 (16)  | 0.0062 (16)  | 0.0000 (15)  |
| C7  | 0.0333 (16) | 0.0209 (14) | 0.0387 (17) | -0.0012 (12) | 0.0007 (16)  | -0.0004 (15) |
| C8  | 0.0412 (17) | 0.0217 (14) | 0.021 (2)   | 0.0032 (14)  | 0.0011 (14)  | -0.0002 (12) |
| C9  | 0.056 (2)   | 0.0340 (18) | 0.0209 (16) | -0.0072 (17) | -0.0033 (18) | 0.0036 (15)  |
| C10 | 0.065 (3)   | 0.037 (2)   | 0.0219 (19) | -0.010 (2)   | -0.0070 (18) | -0.0022 (16) |
| C11 | 0.034 (3)   | 0.039 (3)   | 0.017 (3)   | 0.000 (2)    | 0.000        | 0.000        |
| C12 | 0.046 (4)   | 0.041 (4)   | 0.020 (3)   | -0.004 (2)   | 0.000        | 0.000        |
| C13 | 0.052 (2)   | 0.039 (2)   | 0.0238 (18) | 0.0089 (17)  | 0.0028 (17)  | -0.0022 (16) |
| C14 | 0.0454 (19) | 0.0375 (18) | 0.0236 (17) | 0.0085 (15)  | 0.0011 (18)  | 0.0042 (15)  |
| N1  | 0.058 (2)   | 0.048 (2)   | 0.046 (2)   | 0.0266 (18)  | 0.0021 (18)  | 0.0042 (17)  |
| N2  | 0.035 (3)   | 0.027 (2)   | 0.017 (2)   | 0.0019 (16)  | 0.000        | 0.000        |
| N3  | 0.038 (3)   | 0.035 (3)   | 0.019 (2)   | -0.0026 (17) | 0.000        | 0.000        |
| 01  | 0.0427 (15) | 0.0356 (15) | 0.063 (2)   | 0.0060 (12)  | 0.0208 (15)  | 0.0064 (14)  |
| O2  | 0.0513 (15) | 0.0249 (12) | 0.0578 (17) | 0.0043 (11)  | -0.0216 (14) | -0.0069 (12) |
| O3  | 0.0410 (12) | 0.0197 (9)  | 0.0299 (12) | 0.0006 (9)   | -0.0014 (12) | -0.0005 (10) |
| O4  | 0.0909 (16) | 0.0800 (16) | 0.0802 (17) | 0.0424 (12)  | 0.0035 (13)  | -0.0019 (12) |
| O5  | 0.0888 (16) | 0.0848 (16) | 0.0797 (17) | 0.0400 (12)  | 0.0001 (13)  | 0.0060 (13)  |
| O6  | 0.0356 (12) | 0.0293 (11) | 0.0323 (12) | 0.0041 (9)   | 0.0041 (12)  | 0.0017 (11)  |
| S2  | 0.0310 (4)  | 0.0203 (3)  | 0.0418 (5)  | -0.0003 (3)  | -0.0009 (4)  | 0.0015 (4)   |
| Zn1 | 0.0327 (3)  | 0.0192 (2)  | 0.0174 (2)  | -0.0002 (2)  | 0.000        | 0.000        |

Geometric parameters (Å, °)

| C1—C6 | 1.384 (5) | C11—C10 <sup>i</sup> | 1.379 (5) |
|-------|-----------|----------------------|-----------|
| C1—C2 | 1.391 (5) | C11—C12              | 1.492 (6) |

| C1—S2    | 1.801 (3) | C12—C13 <sup>i</sup>                   | 1.396 (5)   |
|----------|-----------|----------------------------------------|-------------|
| C2—C3    | 1.381 (5) | C12—C13                                | 1.396 (5)   |
| C2—H1    | 0.9300    | C13—C14                                | 1.377 (6)   |
| C3—C4    | 1.383 (5) | С13—Н9                                 | 0.9300      |
| С3—Н2    | 0.9300    | C14—N3                                 | 1.343 (5)   |
| C4—C5    | 1.384 (6) | C14—H10                                | 0.9300      |
| C4—N1    | 1.460 (5) | N1—O4                                  | 1.194 (6)   |
| C5—C6    | 1.390 (5) | N1—O5                                  | 1.217 (6)   |
| С5—Н3    | 0.9300    | N2—C9 <sup>i</sup>                     | 1.330 (4)   |
| С6—Н4    | 0.9300    | N2—Zn1                                 | 2.181 (4)   |
| С7—С8    | 1.530 (4) | N3—C14 <sup>i</sup>                    | 1.343 (5)   |
| C7—S2    | 1.803 (3) | N3—Zn1 <sup>ii</sup>                   | 2.217 (5)   |
| С7—Н5    | 0.9700    | O1—S2                                  | 1.500 (3)   |
| С7—Н6    | 0.9700    | O3—Zn1                                 | 2.098 (2)   |
| C8—O2    | 1.248 (5) | O6—Zn1                                 | 2.136 (2)   |
| C8—O3    | 1.254 (4) | O6—H12                                 | 0.8500      |
| C9—N2    | 1.330 (4) | O6—H11                                 | 0.8501      |
| C9—C10   | 1.397 (6) | Zn1—O3 <sup>i</sup>                    | 2.098 (2)   |
| С9—Н7    | 0.9300    | Zn1—O6 <sup>i</sup>                    | 2.136 (2)   |
| C10—C11  | 1.379 (5) | Zn1—N3 <sup>iii</sup>                  | 2.217 (5)   |
| С10—Н8   | 0.9300    |                                        |             |
| C6—C1—C2 | 121.6 (3) | C13—C12—C11                            | 121.3 (3)   |
| C6—C1—S2 | 118.3 (3) | C14—C13—C12                            | 119.6 (4)   |
| C2—C1—S2 | 120.0 (3) | С14—С13—Н9                             | 120.2       |
| C3—C2—C1 | 119.2 (4) | С12—С13—Н9                             | 120.2       |
| C3—C2—H1 | 120.4     | N3—C14—C13                             | 122.7 (4)   |
| С1—С2—Н1 | 120.4     | N3—C14—H10                             | 118.6       |
| C2—C3—C4 | 118.5 (3) | C13—C14—H10                            | 118.6       |
| С2—С3—Н2 | 120.7     | O4—N1—O5                               | 122.0 (4)   |
| C4—C3—H2 | 120.7     | O4—N1—C4                               | 120.3 (4)   |
| C3—C4—C5 | 123.3 (3) | O5—N1—C4                               | 117.7 (4)   |
| C3—C4—N1 | 118.5 (4) | C9—N2—C9 <sup>i</sup>                  | 117.5 (5)   |
| C5—C4—N1 | 118.1 (3) | C9—N2—Zn1                              | 121.3 (2)   |
| C4—C5—C6 | 117.7 (3) | C9 <sup>i</sup> —N2—Zn1                | 121.3 (2)   |
| C4—C5—H3 | 121.1     | C14—N3—C14 <sup>i</sup>                | 117.9 (5)   |
| С6—С5—Н3 | 121.1     | C14—N3—Zn1 <sup>ii</sup>               | 121.0 (3)   |
| C1—C6—C5 | 119.6 (4) | C14 <sup>i</sup> —N3—Zn1 <sup>ii</sup> | 121.0 (3)   |
| С1—С6—Н4 | 120.2     | C8—O3—Zn1                              | 127.2 (2)   |
| С5—С6—Н4 | 120.2     | Zn1—O6—H12                             | 113.9       |
| C8—C7—S2 | 109.2 (2) | Zn1—O6—H11                             | 100.0       |
| С8—С7—Н5 | 109.8     | H12—O6—H11                             | 117.0       |
| S2—C7—H5 | 109.8     | O1—S2—C1                               | 105.68 (17) |
| С8—С7—Н6 | 109.8     | O1—S2—C7                               | 105.22 (18) |
| S2—C7—H6 | 109.8     | C1—S2—C7                               | 96.11 (15)  |
| Н5—С7—Н6 | 108.3     | O3—Zn1—O3 <sup>i</sup>                 | 174.79 (15) |
| O2—C8—O3 | 127.3 (3) | O3—Zn1—O6 <sup>i</sup>                 | 90.57 (9)   |

# supplementary materials

| O2—C8—C7                  | 117.3 (3)   | $O3^{i}$ —Zn1— $O6^{i}$                | 89.50 (9)   |
|---------------------------|-------------|----------------------------------------|-------------|
| O3—C8—C7                  | 115.4 (3)   | O3—Zn1—O6                              | 89.50 (9)   |
| N2                        | 122.9 (4)   | O3 <sup>i</sup> —Zn1—O6                | 90.57 (9)   |
| N2—C9—H7                  | 118.5       | O6 <sup>i</sup> —Zn1—O6                | 178.29 (15) |
| С10—С9—Н7                 | 118.5       | O3—Zn1—N2                              | 87.39 (7)   |
| C11—C10—C9                | 119.5 (4)   | O3 <sup>i</sup> —Zn1—N2                | 87.39 (7)   |
| С11—С10—Н8                | 120.3       | O6 <sup>i</sup> —Zn1—N2                | 90.86 (7)   |
| С9—С10—Н8                 | 120.3       | O6—Zn1—N2                              | 90.86 (7)   |
| C10 <sup>i</sup> —C11—C10 | 117.6 (5)   | O3—Zn1—N3 <sup>iii</sup>               | 92.61 (7)   |
| C10 <sup>i</sup> —C11—C12 | 121.2 (3)   | O3 <sup>i</sup> —Zn1—N3 <sup>iii</sup> | 92.61 (7)   |
| C10-C11-C12               | 121.2 (3)   | O6 <sup>i</sup> —Zn1—N3 <sup>iii</sup> | 89.14 (7)   |
| C13 <sup>i</sup> —C12—C13 | 117.4 (5)   | O6—Zn1—N3 <sup>iii</sup>               | 89.14 (7)   |
| C13 <sup>i</sup> —C12—C11 | 121.3 (3)   | N2—Zn1—N3 <sup>iii</sup>               | 180.000 (3) |
|                           | . 1 (***) 1 |                                        |             |

Symmetry codes: (i) -*x*, -*y*+2, *z*; (ii) *x*, *y*, *z*+1; (iii) *x*, *y*, *z*-1.

# Hydrogen-bond geometry (Å, °)

| D—H···A                                                                       | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | $D -\!\!\!-\!\!\!\!- \mathbf{H} \cdots A$ |
|-------------------------------------------------------------------------------|-------------|--------------|--------------|-------------------------------------------|
| O6—H12···O1 <sup>iv</sup>                                                     | 0.85        | 1.88         | 2.731 (4)    | 176                                       |
| 06—H11…O2 <sup>i</sup>                                                        | 0.85        | 1.83         | 2.655 (4)    | 162                                       |
| Symmetry codes: (iv) $x+1/4$ , $-y+7/4$ , $z-1/4$ ; (i) $-x$ , $-y+2$ , $z$ . |             |              |              |                                           |

sup-6



Fig. 1

Fig. 2

